,除了深度学习,计算机视觉还有哪些方向值得研究?

用户投稿 314 0

关于深度学习与计算机视觉关系的问题,小编就整理了2个相关介绍深度学习与计算机视觉关系的解答,让我们一起看看吧。

除了深度学习,计算机视觉还有哪些方向值得研究?

机器视觉的终极目的,是像生物一样,让机器拥有自己的视觉。顺着这个思路,机器视觉的目的和意义,就很明确了。明确了机器视觉的目的后,机器视觉的任务也就明确了。所以,机器视觉的任务,应该包括以下几类:1.三维空间机器视觉感知。2.基于视觉感知的视觉识别。3.加入时间参数后的机器视觉感知和识别,比如视觉定位,运动感知,物体追踪等。4.基于视觉感和知的基础上视觉概念的生成和对视觉事件的理解和解析。

综上,目前的深度学习技术只是完成了机器视觉任务的第二项任务中的一个小部分。存在的主要问题包括:1.深度学习技术只是定性,不能定量,例如,只知道识别物体,不知道物体的大小尺寸,因为不是基于三维空间数据,无法定量检测。反过来说,深度学习技术应该基于三维空间进行,这样就可以实现定量检测和准确识别。2.深度学习技术需要大样本,标注后的学习过程,无法实现无监督,小样本的示范性学习,学习时消耗的功率和算力太多。

所以,目前的深度学习技术开辟了机器自动学习的模式和时代,特别是大规模神经网络结构,开辟了机器向人类大脑结构学习的方法和思路。目前的机器深度学习技术架构以及基础的运算架构只是一种过渡性技术,不远的未来一定被其它具有自学习,自组织的架构所替代。机器视觉是机器学习技术的最佳应用场所,未来的趋势是基于三维数据的一次性示范学习,以及基于基本视觉元素和属性基础上的高阶机器视觉概念的自动生成和自动学习。

人工智能计算机视觉的基本原理?

目前主流的基于深度学习的机器视觉方法,其原理跟人类大脑工作的原理比较相似。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

人类大脑看图的原理

机器的方法也是类似:构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类。

人工智能计算机的视觉原理是:研究如何使机器“看”的科学,就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。

到此,以上就是小编对于深度学习与计算机视觉关系的问题就介绍到这了,希望介绍深度学习与计算机视觉关系的2点解答对大家有用。

抱歉,评论功能暂时关闭!