人工智能在计算机视觉的应用,计算机视觉和机器视觉哪个有前途?

用户投稿 394 0

关于人工智能在计算机视觉的问题,小编就整理了3个相关介绍人工智能在计算机视觉的解答,让我们一起看看吧。

计算机视觉和机器视觉哪个有前途?

机器视觉。

视觉技术在人工智能体系中有很重要的地位,人工智能落地应用主要有图像识别、语音合成、机器翻译等感知类任务上的应用和产业应用场景。

视觉技术又可分计算机视觉和机器视觉,应用场景的不同是计算机视觉和机器视觉的最根本差别。

人工智能研究的机器感知包括?

1 视觉感知

视觉系统由于获取的信息量更多更丰富,采样周期短,受磁场和传感器相互干扰影响小,质量轻,能耗小,使用方便经济等原因,在很多移动机器人系统中受到青睐。

视觉传感器将景物 的光信号转换成电信号。目前,用于获取图像的视觉传感器主要是数码摄像机。

在视觉传感器中主要有单目、双目与全景摄像机3种。

单目摄像机对环境信息的感知能力较弱,获取的只是摄像头正前方小范围内的二维环境信息;

双目摄像机对环境信息的感知能力强于单目摄像机,可以在一定程度上感知三维环境信息,但对距离信息的感知不够准确;

全景摄像机对环境信息感知的能力强,能在360度范围内感知二维环境信息,获取的信息量大,更容易表示外部环境状况。

但视觉传感器的缺点是感知距离信息差、很难克服光线变化及阴影带来的干扰并且视觉图像处理需要较长的计算时间,图像处理过程比较复杂,动态性能差,因而很难适应实时性要求高的作业。

2 听觉感知

听觉是人类和机器人识别周围环境很重要的感知能力,尽管听觉定位精度比是决定为精度低很多,但是听觉有很多其它感官无可比拟的疼醒。听觉定位是全向性的,传感器阵列可以接受空间中的任何方向的声音。机器人依靠听觉可以工作在黑暗环境中或者光线很暗的环境中进行声源定位和语音识别,这是依靠视觉不能实现的。

计算机视觉,需要什么能力?

计算机视觉需要具备的能力有:

1、图像处理的知识。图像处理大致包括的内容:光学成像基础、颜色、滤波器、局部图像特征、图像纹理、图像配等。

2、立体视觉的知识。立体视觉大致包括的内容:相机几何模型、双目视觉、从运动中恢复物体结构、三维重建技术等。

3、人工智能的知识。人工智能大致包括的内容:场景理解与分析、模式识别、图像搜索、数据挖掘、深度学习等。 

4、与计算机视觉相关的学科还有:机器视觉、数字图像处理、医学成像、摄影测量、传感器等。

到此,以上就是小编对于人工智能在计算机视觉的问题就介绍到这了,希望介绍人工智能在计算机视觉的3点解答对大家有用。

抱歉,评论功能暂时关闭!