计算机视觉研究方向有哪些以及例子,计算机视觉哪个方向比较有前景?

用户投稿 359 0

关于计算机视觉研究方向有哪些的问题,小编就整理了4个相关介绍计算机视觉研究方向有哪些的解答,让我们一起看看吧。

计算机视觉哪个方向比较有前景?

计算机视觉有2个方向比较有发展前景:基于深度学习的和基于几何方法的。

  基于深度学习的:

  文字识别、图像识别、人脸识别、视频内容理解、医疗影像诊断、神经网络芯片、驾驶辅助等。

  基于几何方法的:

  虚拟现实、增强现实、三维重建、机器人、无人机、无人驾驶等

除了深度学习,计算机视觉还有哪些方向值得研究?

机器视觉的终极目的,是像生物一样,让机器拥有自己的视觉。顺着这个思路,机器视觉的目的和意义,就很明确了。明确了机器视觉的目的后,机器视觉的任务也就明确了。所以,机器视觉的任务,应该包括以下几类:1.三维空间机器视觉感知。2.基于视觉感知的视觉识别。3.加入时间参数后的机器视觉感知和识别,比如视觉定位,运动感知,物体追踪等。4.基于视觉感和知的基础上视觉概念的生成和对视觉事件的理解和解析。

综上,目前的深度学习技术只是完成了机器视觉任务的第二项任务中的一个小部分。存在的主要问题包括:1.深度学习技术只是定性,不能定量,例如,只知道识别物体,不知道物体的大小尺寸,因为不是基于三维空间数据,无法定量检测。反过来说,深度学习技术应该基于三维空间进行,这样就可以实现定量检测和准确识别。2.深度学习技术需要大样本,标注后的学习过程,无法实现无监督,小样本的示范性学习,学习时消耗的功率和算力太多。

所以,目前的深度学习技术开辟了机器自动学习的模式和时代,特别是大规模神经网络结构,开辟了机器向人类大脑结构学习的方法和思路。目前的机器深度学习技术架构以及基础的运算架构只是一种过渡性技术,不远的未来一定被其它具有自学习,自组织的架构所替代。机器视觉是机器学习技术的最佳应用场所,未来的趋势是基于三维数据的一次性示范学习,以及基于基本视觉元素和属性基础上的高阶机器视觉概念的自动生成和自动学习。

计算机视觉哪些方向好发论文?

不仅仅是计算机视觉研究,对于计算机领域整体的研究而言。一开始找准方向是一个很重要的问题,其原因有两个:某些细节方向可能是走着走着发现“此路不通”,一个“好的”论文方向最好是一个你自己感兴趣的方向。每个人擅长的领域也不尽相同。

AI视觉是什么方向?

视觉AI属于人工智能一个子领域,一般时候称为“计算机视觉”,主要方向为模式识别、图像处理。

  顾名思义,计算机视觉就是让计算机能够像人一样“看见”,获得对客观世界的感知、识别和理解的能力。

  其背后还包含机器学习、深度学习等相关算法,从而让计算机掌握人脸识别、图像识别、图像分割、图像重构、图像生成、目标检测等技能,在一些特定的危险场景和重复性的生产作业中替代人,以节省人力,并提升效率。

到此,以上就是小编对于计算机视觉研究方向有哪些的问题就介绍到这了,希望介绍计算机视觉研究方向有哪些的4点解答对大家有用。

抱歉,评论功能暂时关闭!